
ACE: Moving toward Co-Investigation with the Agentic
Code Explorer
Dario Andres Silva Moran2, Kristina Brimijoin1, Gabriel Enrique Gonzalez2,
Stephanie Houde1, Michael Muller1, Michelle Brachman1 and Justin D. Weisz1

1IBM Research, USA
2IBM Research, AR

Abstract
In this workshop demonstration paper, we present ACE – the Agentic Code Explorer – a prototype agentic system
designed to help software developers conduct sensemaking tasks within large code repositories. The design of
this system was motivated by the observation that software developers often use AI coding assistants to help
understand and ask questions about source code prior to planning and implementing code changes. Using ACE
as a testbed, we present initial steps to explore whether a large language model (LLM)-based agent that is capable
of invoking external tools and iteratively refining its own outputs (per the agentic design pattern) might be able
to robustly support such a code discovery process. In this way, we use ACE as a means to explore more generally
how generative models need not solely focus on the artifact production aspects of co-creative tasks; instead they
might focus on the co-investigative activities where initial understanding and plans are formed.

Keywords
Agentic AI, Co-creation, Co-investigation, Code understanding, Human-AI collaboration, Mutual theory of mind

1. Introduction

Human-AI co-creation is a process by which “humans and AI collaborat[e] on a shared creative product
as partners” [1, Abstract]. Explicit in this definition is the focus on a “shared creative product”: the
purpose of the co-creative process is to create. Commonly, the type of AI model used in such co-creative
processes are generative models, specifically because of their ability to produce output artifacts; i.e.
their ability to create. A large body of research has demonstrated the value of using generative models
to enable co-creative processes (e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), and many communities are
focused on investigating how best to design co-creative user experiences (e.g. HAI-GEN [14, 15, 16, 17],
GenAICHI [18, 19, 20], ICCC1, HHAI2).

Many co-creative use cases involve exploratory steps [21, 22] where the objective of the activity is
on the production of knowledge and insight rather than production of artifacts. Indeed, many studies
highlight how generative models are valuable for their ability to answer general knowledge questions,
explain novel or specialized domains, and help people learn new concepts (e.g. [22, 23, 24, 25, 26, 27]).
With the rise of agentic design patterns, in which an AI agent can evaluate and iterate upon its own
outputs and invoke external tools, we propose that the time is ripe for these investigatory uses of
generative models to be brought to the forefront as a core value of generative AI.

In this paper we take an initial step toward focusing on co-investigation as a primary activity with
an agentic system via a prototype called ACE – the Agentic Code Explorer. This project was motivated

Joint Proceedings of the ACM IUI Workshops 2025, March 24-27, 2025, Cagliari, Italy
$ dario.silva@ibm.com (D. A. Silva Moran); kbrimij@us.ibm.com (K. Brimijoin); gabriel.gonzalez@ibm.com (G. E. Gonzalez);
Stephanie.Houde@ibm.com (S. Houde); michael_muller@us.ibm.com (M. Muller); michelle.brachman@ibm.com
(M. Brachman); jweisz@us.ibm.com (J. D. Weisz)
� 0000-0002-3049-3139 (D. A. Silva Moran); 0000-0001-5616-9567 (K. Brimijoin); 0009-0001-4818-1205 (G. E. Gonzalez);
0000-0002-0246-2183 (S. Houde); 0000-0001-7860-163X (M. Muller); 0000-0001-8152-441X (M. Brachman);
0000-0003-2228-2398 (J. D. Weisz)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1International Conference on Computational Creativity. http://computationalcreativity.net/
2Hybrid Human AI Systems for the Social Good. https://hhai-conference.org/

mailto:dario.silva@ibm.com
mailto:kbrimij@us.ibm.com
mailto:gabriel.gonzalez@ibm.com
mailto:Stephanie.Houde@ibm.com
mailto:michael_muller@us.ibm.com
mailto:michelle.brachman@ibm.com
mailto:jweisz@us.ibm.com
https://orcid.org/0000-0002-3049-3139
https://orcid.org/0000-0001-5616-9567
https://orcid.org/0009-0001-4818-1205
https://orcid.org/0000-0002-0246-2183
https://orcid.org/0000-0001-7860-163X
https://orcid.org/0000-0001-8152-441X
https://orcid.org/0000-0003-2228-2398
https://creativecommons.org/licenses/by/4.0/deed.en
http://computationalcreativity.net/
https://hhai-conference.org/

by an observation that software developers3 often use AI coding assistants to help understand and ask
questions about source code, in addition to directly producing it [27, 28]. The aspect of co-investigation
we have initially designed for occurs at the start of a coding project when a period of exploration and
discovery is needed prior to planning and writing new code - particularly when faced with an unfamiliar
code repository. After presenting a review of prior work related to the current implementation of ACE
and future features planned, we describe the prototype and elaborate on next steps.

Our paper makes the following contributions to the HAI-GEN community:

• We present ACE, an LLM-based agent designed to aid software developers in code sensemaking
tasks.

• Through ACE, we take an initial step toward understanding how generative models coupled with
agentic capabilities could drive robust co-investigative processes.

2. Related work

We review several areas of literature relevant to the current design of ACE (presented in Section 3)
including: LLM agents, code understanding needs, and existing AI support tools for software developers.
We additionally review literature relevant to mutual theory of mind as background for future work
plans described in Section 4.

2.1. LLM agents & agentic workflows

Recently, LLMs have been used to drive agentic workflows in which a user specifies a goal and the LLM
makes its own determinations of what steps are needed to achieve that goal [29, 30]. These workflows
are enabled by two key developments:

1. A pattern in which the LLM is allowed to orchestrate a series of planning, action and assessment
steps when formulating a response to a user’s query actions [31, 32, 33].

2. The ability to take actions that invoke tools external to the LLM, such as making API calls,
executing software programs, or writing and executing arbitrary code.

Our ACE prototype leverages both of these capabilities within a code environment with the aim of
helping users understand unfamiliar code repositories.

2.2. Code understanding needs

Researchers have investigated how software developers build mental models of software systems.
Often, developers have questions that require links to the broader code base, external information, or
interaction with other developers. For example, developers want to know what the implications of a
change are [34] or where certain methods are being called [35]. Answering these questions requires
knowledge of a code base as a whole. Software developers also ask questions about why code was
implemented in a certain way. This information may not always be present within the code itself, but
may exist externally such as within GitHub issues or external documentation [34, 36]. Developers are
also interested in maintaining awareness of their co-workers activities [34], knowing who owns pieces
of code [36], and knowing how their colleagues have interacted with their code [37].

Our ACE prototype is designed to provide answers to general questions users can ask about all
the code in a single repository. Agentic reasoning is applied to enable the agent to provide helpful
answers based on sources like the relevant lines of code and generated code summaries. In future work,
described in Section 4, we describe plans to expand the agent’s information sources to Github Issues
and developer team profiles.

3In this paper, the term “software developer” is used broadly to encompass individuals involved in code-related work, including
software engineers, architects, and data scientists.

2.3. Mutual theory of mind

A new idea emerging in human-centered AI research focuses on improving the quality of human-AI
interactions by developing two kinds of models:

• A user’s mental model of the AI agent, and
• The AI agent’s model of the user.

This idea has been described as mutual theory of mind [38, 39] because it involves each party forming
a model of the other party’s (mental) state, such as their knowledge, beliefs, intentions, and perceptions.
We believe mutual theory of mind will improve the quality of human-AI interactions because (1) it
encourages the design of features that help users form mental models of how to effectively use an AI
system (e.g. by understanding its capabilities and limitations), and (2) it enables an AI system to interact
with a user on an individual level (e.g. by tailoring how it responds to that particular user’s needs,
preferences, and level of expertise). Weisz et al. provide additional future scenarios for how mutual
theory of mind can improve (or not) the quality of human-AI interactions.

As an initial step toward operationalizing mutual theory of mind, our ACE prototype modifies agent
responses with prompts derived from an editable profile representing the user’s expertise (Figure 2). In
future work, we plan to enrich this feature to facilitate proactive support by the agent when observation
of user behavior and questions suggest this would be useful, as well as providing profile information
about the agent that the user could use to inform their questions.

2.4. AI support tools for software developers

Researchers have validated the usefulness of generative AI for assisting software developers [9, 41, 42]
and for helping students learning programming [43]. Such assistance need not be limited to acts of
code production: a recent survey of software developers showed that understanding code was a top use
for an AI software engineering assistant [27]. However, opportunities remain to improve support for
code understanding, such as including user and code context [37, 44], as well as connecting code with
external information [45].

A number of commercially available tools offer support for code understanding tasks, including
Cursor4, Claude5, and GitHub Copilot6. Our current ACE prototype offers similar code understand-
ing support in a form that we can use to freely build experimental functional and user experience
enhancements. In future work, we aim to enrich ACE to explore whether we can provide higher
quality personalized support for code understanding through prompting the AI with a more holistic
understanding of the the user, their goals, and team context.

3. ACE: the Agentic Code Explorer for investigating code repositories

We developed the Agentic Code Explorer (ACE) to explore how agentic design patterns could enable
richer forms of assistance beyond mere LLM-based text generation. Our initial prototype was built as a
standalone web application, rather than as a plugin for existing developer IDEs, to allow us the freedom
to control all aspects of interaction design, model prompting, agentic tool design, interaction design,
and usage data collection during the early stages of our research. Recognizing that developers often
prefer having new development tools integrated into their IDE [9], we anticipate future versions of
ACE to be implemented as such.

4Cursor. https://www.cursor.com
5Claude. https://www.anthropic.com/claude
6GitHub Copilot. https://github.com/features/copilot

https://www.cursor.com
https://www.anthropic.com/claude
https://github.com/features/copilot

3.1. ACE interface

We show ACE’s interface in Figure 1. ACE’s front end was built using the Svelte framework7 and its
back end was implemented in Python using FastAPI8.

Lucio

Lucio

3:01 PM

3:15 PM

Overview

The code snippet is a function named `process_event` that takes an `Event` object as a parameter and
returns a dictionary with a key \"extractors\" and a value obtained from
the`OutputPayloadExtractorFactory.get_extractors()` method.

Process
 The function first registers the user with the `ParticipantManager` and logs the event.
 It then creates a new prompt by concatenating the context and the event prompt
 Next, it creates an `InputEvent` object with the agent ID, user ID, session ID, payload, event timestamp,

expects response, and transient properties from the input event.
 It logs the input event and queues it for processing using the `InProcessDispatcher` and the

`_llm_event_processor` functio
 Finally, it waits for the result of the processing and returns the result as a dictionary with a key \"results\"

if there is no error, or a dictionary with an \"error\" key and a message if there is an error.

A B C

Figure 1: ACE User Interface. Three interface panels allow the user to (A) browse all files in a GitHub
code repository, (B) view either the raw source code or an AI-generated summary of a selected code file
(shown above), and (C) converse with an LLM-based agent that has access to the full code repository
and can answer general programming questions and targeted questions about a file, a code summary,
or selected lines of code.

ACE presents a code repository’s files in a tree structure (Figure 1A), mirroring how they are typically
presented in developer IDEs. When a file is selected, ACE generates a natural language overview of
the file in the central panel (Figure 1B). The overview provides a high-level description of the file’s
functionality, summarizing the purpose of the code and all of the classes and methods defined in it.
Within the same panel, the user can switch to the “Code” view to see the raw source code.

Users can converse with ACE in the right sidebar (Figure 1C). ACE uses the user’s current context –
which file they have open and any text they have selected in the interface – to answer questions. Users
can also select text in the interface and press a keyboard shortcut to open a chat input, allowing them
to ask ACE a question about anything they see on the screen.

As ACE uses an agentic workflow, the latency of its responses may be high. Therefore, ACE delivers
its responses to the chat UI via a streaming API, enabling the user to follow its progress as it processes
the query (Figure 3). Users can view or hide ACE’s processing steps, which show information about
ACE’s reasoning, observations, tool invocations and outputs.

3.2. Agentic workflow design

ACE is a conversational agent built using the LangGraph9 framework. We chose LangGraph for its
ability to provide fine-grained control over workflow execution, built-in persistence, and robust LLM
integration [46, 47]. ACE operates as a ReAct-based agent [31] composed of four interconnected nodes:
Planner, Agent, Tools, and Observer. Each node has specific responsibilities and is guided by a custom
prompt template, shown in Appendices A, B, and C.

7Svelte. https://svelte.dev
8FastAPI. https://fastapi.tiangolo.com
9LangGraph. https://langchain-ai.github.io/langgraph/

https://svelte.dev
https://fastapi.tiangolo.com
https://langchain-ai.github.io/langgraph/

Lucio

Figure 2: User Profile. Information in this profile is used by ACE to adapt its responses to the user. For
this user, ACE will provide more direct and succinct responses to questions about Python, and longer
and more explanatory responses to questions about CSS.

We equipped ACE with tools tailored for summarizing and explaining code (Figure 1B), understanding
code dependencies and querying the repository (Figure 3), and visualizing function calls (Figure 4). Since
these features operate at the level of a code repository, ACE first performs a preprocessing stage that
divides the repository into manageable chunks using LangChain’s CodeTextSplitter, embeds them
using the all-minilm-l6-v2 model, and stores the resulting vectors in an ElasticSearch database.
This setup enables ACE to perform retrieval-augmented generation (RAG) [48] in response to a user’s
query.

For code summarization, the agent pre-generates natural language summaries at multiple granularities:
one for each function or method within the repository, one for each class, and one for each source file.
ACE uses the codellama-34b-instruct model to produce these summaries.

4. Opportunities & next steps

We see two broad opportunities to improve ACE’s ability to provide useful assistance to software
developers. The first involves increasing the amount of information ACE has about the code itself and
developing more tools to digest, organize, present that information to users. For example, ACE could
incorporate multiple linked code repositories as well as information about code rationale embedded
in GitHub Issues. It could also generate documentation that is missing from the repository or update
outdated documentation. It can be equipped with more tools that enable it to render this information in
new and different visual formats, akin to systems that generate visualizations from natural language [49,
50]. It can also be more tightly-integrated within a developer’s IDE rather than existing as a standalone
tool.

The second opportunity stems from recognizing that individuals will differ in the types of support
they will need from an AI agent. We can build capabilities into ACE that (1) help users understand

Lucio Lucio3:01 PM 3:01 PM

A B

Figure 3: Agentic workflow. When a user asks a question, ACE executes an agentic workflow to
produce a response (A). Users can examine the process used by ACE to generate that response by viewing
its thoughts, actions, tool invocations, and outputs (B).

what kinds of assistance ACE is capable of and (2) allow ACE to recognize those individual differences
and tailor its assistance on an individual basis. This idea goes beyond mere personalization because it
involves aligning two models – the human’s mental model of ACE and ACE’s model of the user and
their mental state. This idea has recently been introduced within the human-centered AI community as
mutual theory of mind [38, 39], and prior work has examined how operationalizing it can be beneficial
in various work domains [40].

We aim to build on the mutual theory of mind model of Wang and Goel [38]. They described a
three-step process in which (1) an AI agent computes an initial model of the human; (2) the human may
discover that the model is inaccurate, and may then ask the AI to revise that model; (3) the AI revises its
model. Wang and Goel [38] primarily addressed the traits of the user (e.g., “Liz seems to enjoy artistic
activities”). We propose two extensions of this model. First, ACE would combine both the ability to
maintain a user model of traits (e.g., Figure 2) with a more dynamic user model of the human’s current
goal or states (e.g., Figure 3). These state-oriented activities could be carried out through a fine-grained
form of agentic patterns [31, 32, 33].

The second extension under consideration is an expansion of ideas that were hinted at by Wang
and Goel [38]. Their model focused on how the AI builds a model of the user. In a complementary
way, ACE has the potential to assist the user in building a mental model of ACE and its capabilities.
This process would be a role-reversal of the three-step process in the preceding paragraph, and might
involve iterative approaches to Explainable AI (XAI) [51].

Within the context of ACE, an operationalized mutual theory of mind would enable ACE to provide
new forms of support:

• Infer code purpose and intent. Frequently, the motivations for why a block of code exists are
not well documented. We believe ACE can piece together the context needed to answer such

Figure 4: Visualizing functions. ACE is able to invoke tools that produce visualizations as outputs,
such as this diagram showing a sequence of function calls.

questions about motivation by examining repository metadata, such as team discussions, GitHub
Issues and commit histories. We also believe ACE could capture and record such motivations at
the moment code is written and then recall them in the future when they are needed.

• Facilitate team coordination by understanding team expertise. Software development hap-
pens within teams and teams that have a high degree of shared knowledge of team member skills,
task knowledge, and current activities [52]. We believe ACE could facilitate team coordination
by developing a similarly deep understanding of team member expertise. It could do this by
examining relevant data (i.e. code) and metadata (i.e. comments made on issues or pull requests,
chat messages, etc.), as well as by asking users to self-describe their expertise (i.e. akin to our
profile in Figure 2). Once equipped with such profiles, ACE would no longer need to attempt to
answer every user query itself; rather, it could refer to other people on the team who possess the
relevant expertise or experience. In this way, ACE may provide some of the human connections
that deepen collective knowledge (e.g., distributed cognition [53]) in diverse teams [54, 55].

• Align agent responses to individual users. With a model of an individual user’s expertise,
ACE could align the way it responds to that user in a more tailored way. For example, a developer
who is less familiar with a specific programming language can be provided with code explanations
that fill in syntactical gaps, whereas a developer having that expertise will receive an explanation
that omits language-specific guidance.

• Act proactively. ACE currently provides assistance in a reactive fashion: when the user makes a
query. But if ACE has a deep understanding of the user’s intent and goals – e.g. why they need to
understand a particular block of code – it may be able to offer assistance in a proactive fashion.
For example, a user may need to understand where in a large repository to add new functionality.
Rather than providing summaries of files as requested by the user, ACE may be able to proactively
suggest which files to look at and offer suggestions for where the new code should be added.
Taken to the limit, ACE might be able to organize the whole software development process, aided
through discussions with the developer to ensure it maintains alignment with their intent.

We believe such features will enable ACE to be an effective collaborator within human-AI teams,
leading to synergistic team outcomes [56]. Thus, as we build these features, we recognize the importance
of evaluating their efficacy with users early and often.

5. Conclusion

We present ACE, a prototype Agentic Code Explorer that aids software developers in understanding code
repositories. ACE was designed as a testbed for examining new approaches to human-AI collaboration
for co-investigative tasks with a specific focus on incorporating features that help users establish
a mutual theory of mind with the agent. It uses the ReAct paradigm to plan its response to a user
query and it invokes tools that either retrieve information from the code repository or generate new
representations of that information. Although the primary focus of our prototype has been on enabling
the agentic workflow, future development of ACE will focus on how it can achieve a strong degree
of alignment with its users’ needs and intentions. In this way, ACE represents an initial step toward
understanding how generative models need not solely focus on the production aspects of co-creative
tasks; instead, agentic design patterns may enable generative models to act as robust information
supports for users engaged in co-investigation tasks such as understanding for purposes of development
task planning and completion.

References

[1] J. Rezwana, M. L. Maher, Designing creative ai partners with cofi: A framework for modeling
interaction in human-ai co-creative systems, ACM Transactions on Computer-Human Interaction
30 (2023) 1–28.

[2] X. Du, P. An, J. Leung, A. Li, L. E. Chapman, J. Zhao, Deepthink: Designing and probing human-ai
co-creation in digital art therapy, International Journal of Human-Computer Studies 181 (2024)
103139.

[3] S. Wang, S. Menon, T. Long, K. Henderson, D. Li, K. Crowston, M. Hansen, J. V. Nickerson, L. B.
Chilton, Reelframer: Human-ai co-creation for news-to-video translation, in: Proceedings of the
CHI Conference on Human Factors in Computing Systems, 2024, pp. 1–20.

[4] S. Suh, M. Chen, B. Min, T. J.-J. Li, H. Xia, Luminate: Structured generation and exploration of
design space with large language models for human-ai co-creation, in: Proceedings of the CHI
Conference on Human Factors in Computing Systems, 2024, pp. 1–26.

[5] S. Houde, S. I. Ross, M. Muller, M. Agarwal, F. Martinez, J. T. Richards, K. Talamadupula, J. D. Weisz,
Opportunies for generative AI in UX modernization 81-91, in: A. Smith-Renner, O. Amir (Eds.),
Joint Proceedings of the IUI 2022 Workshops: APEx-UI, HAI-GEN, HEALTHI, HUMANIZE, TExSS,
SOCIALIZE co-located with the ACM International Conference on Intelligent User Interfaces
(IUI 2022), Virtual Event, Helsinki, Finland, March 21-22, 2022, volume 3124 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022, pp. 81–91.

[6] D. Yang, Y. Zhou, Z. Zhang, T. J.-J. Li, R. LC, Ai as an active writer: Interaction strategies with
generated text in human-ai collaborative fiction writing, in: A. Smith-Renner, O. Amir (Eds.),
Joint Proceedings of the IUI 2022 Workshops: APEx-UI, HAI-GEN, HEALTHI, HUMANIZE, TExSS,
SOCIALIZE co-located with the ACM International Conference on Intelligent User Interfaces
(IUI 2022), Virtual Event, Helsinki, Finland, March 21-22, 2022, volume 3124 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022, pp. 56–65.

[7] J. D. Weisz, M. Muller, S. Houde, J. Richards, S. I. Ross, F. Martinez, M. Agarwal, K. Talamadupula,
Perfection not required? human-ai partnerships in code translation, in: Proceedings of the 26th
International Conference on Intelligent User Interfaces, 2021, pp. 402–412.

[8] J. D. Weisz, M. Muller, S. I. Ross, F. Martinez, S. Houde, M. Agarwal, K. Talamadupula, J. T. Richards,
Better together? an evaluation of ai-supported code translation, in: Proceedings of the 27th
International Conference on Intelligent User Interfaces, 2022, pp. 369–391.

[9] S. I. Ross, F. Martinez, S. Houde, M. Muller, J. D. Weisz, The programmer’s assistant: Conversational
interaction with a large language model for software development, in: Proceedings of the 28th
International Conference on Intelligent User Interfaces, 2023, pp. 491–514.

[10] D. Bau, H. Strobelt, W. Peebles, J. Wulff, B. Zhou, J.-Y. Zhu, A. Torralba, Semantic photo manipula-
tion with a generative image prior, arXiv preprint arXiv:2005.07727 (2020).

[11] M. Muller, S. Houde, G. Gonzalez, K. Brimijoin, S. I. Ross, D. A. S. Moran, J. D. Weisz, Group
brainstorming with an ai agent: Creating and selecting ideas, in: International Conference on
Computational Creativity, 2024.

[12] O. Shaer, A. Cooper, A. L. Kun, O. Mokryn, Toward enhancing ideation through collaborative
group-ai brainwriting., in: A. Soto, E. Zangerle (Eds.), Joint Proceedings of the ACM IUI 2024
Workshops co-located with the 29th Annual ACM Conference on Intelligent User Interfaces
(IUI 2024), Greenville, South Carolina, USA, March 18, 2024, volume 3660 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024.

[13] B. Tilekbay, S. Yang, M. A. Lewkowicz, A. Suryapranata, J. Kim, Expressedit: Video editing with
natural language and sketching, in: Proceedings of the 29th International Conference on Intelligent
User Interfaces, 2024, pp. 515–536.

[14] W. Geyer, L. B. Chilton, J. D. Weisz, M. L. Maher, Hai-gen 2021: 2nd workshop on human-ai co-
creation with generative models, in: Companion Proceedings of the 26th International Conference
on Intelligent User Interfaces, 2021, pp. 15–17.

[15] J. D. Weisz, M. L. Maher, H. Strobelt, L. B. Chilton, D. Bau, W. Geyer, Hai-gen 2022: 3rd workshop on
human-ai co-creation with generative models, in: Companion Proceedings of the 27th International
Conference on Intelligent User Interfaces, 2022, pp. 4–6.

[16] M. L. Maher, J. D. Weisz, L. B. Chilton, W. Geyer, H. Strobelt, Hai-gen 2023: 4th workshop on
human-ai co-creation with generative models, in: Companion Proceedings of the 28th International
Conference on Intelligent User Interfaces, 2023, pp. 190–192.

[17] W. Geyer, M. L. Maher, J. D. Weisz, D. Buschek, L. B. Chilton, Hai-gen 2024: 5th workshop on
human-ai co-creation with generative models, in: Companion Proceedings of the 29th International
Conference on Intelligent User Interfaces, 2024, pp. 122–124.

[18] M. Muller, L. B. Chilton, A. Kantosalo, C. P. Martin, G. Walsh, Genaichi: generative ai and hci, in:
CHI conference on human factors in computing systems extended abstracts, 2022, pp. 1–7.

[19] M. Muller, L. B. Chilton, A. Kantosalo, Q. V. Liao, M. L. Maher, C. P. Martin, G. Walsh, Genaichi 2023:
Generative ai and hci at chi 2023, in: Extended Abstracts of the 2023 CHI Conference on Human
Factors in Computing Systems, CHI EA ’23, Association for Computing Machinery, New York, NY,
USA, 2023. URL: https://doi.org/10.1145/3544549.3573794. doi:10.1145/3544549.3573794.

[20] M. Muller, A. Kantosalo, M. L. Maher, C. P. Martin, G. Walsh, Genaichi 2024: Generative ai and
hci at chi 2024, in: Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems, 2024, pp. 1–7.

[21] M. Kreminski, I. Karth, M. Mateas, N. Wardrip-Fruin, Evaluating mixed-initiative creative interfaces
via expressive range coverage analysis., in: A. Smith-Renner, O. Amir (Eds.), Joint Proceedings
of the IUI 2022 Workshops: APEx-UI, HAI-GEN, HEALTHI, HUMANIZE, TExSS, SOCIALIZE
co-located with the ACM International Conference on Intelligent User Interfaces (IUI 2022), Virtual
Event, Helsinki, Finland, March 21-22, 2022, volume 3124 of CEUR Workshop Proceedings, CEUR-
WS.org, 2022, pp. 34–45.

[22] J. D. Weisz, J. He, M. Muller, G. Hoefer, R. Miles, W. Geyer, Design principles for generative ai
applications, in: Proceedings of the CHI Conference on Human Factors in Computing Systems,
2024, pp. 1–22.

[23] M.-K. Ghali, Y. Jin, Empowering research: Open-source llms, semantic search, and domain-specific
knowledge in a multi-document q&a assistant, in: IISE Annual Conference. Proceedings, Institute
of Industrial and Systems Engineers (IISE), 2024, pp. 1–6.

[24] M. A. Arefeen, B. Debnath, S. Chakradhar, Leancontext: Cost-efficient domain-specific question
answering using llms, Natural Language Processing Journal 7 (2024) 100065.

[25] F. Yang, P. Zhao, Z. Wang, L. Wang, J. Zhang, M. Garg, Q. Lin, S. Rajmohan, D. Zhang, Empower
large language model to perform better on industrial domain-specific question answering, arXiv
preprint arXiv:2305.11541 (2023).

[26] Y. Zhang, L. Chen, S. Li, N. Cao, Y. Shi, J. Ding, Z. Qu, P. Zhou, Y. Bai, Way to specialist: Closing loop

https://doi.org/10.1145/3544549.3573794
http://dx.doi.org/10.1145/3544549.3573794

between specialized llm and evolving domain knowledge graph, arXiv preprint arXiv:2411.19064
(2024).

[27] J. D. Weisz, S. Kumar, M. Muller, K.-E. Browne, A. Goldberg, E. Heintze, S. Bajpai, Examining the
use and impact of an ai code assistant on developer productivity and experience in the enterprise,
arXiv preprint arXiv:2412.06603 (2024).

[28] A. Ghimire, J. Edwards, Coding with ai: How are tools like chatgpt being used by students in
foundational programming courses, in: International Conference on Artificial Intelligence in
Education, Springer, 2024, pp. 259–267.

[29] M. Mitchell, A. Ghosh, S. Luccioni, G. Pistilli, Ai agents are here. what now?, HuggingFace Blog,
Articles, and discussions (2025). URL: https://huggingface.co/blog/ethics-soc-7.

[30] A. Gutowska, What are ai agents?, IBM Think: Tech news, education and events (2024). URL:
https://www.ibm.com/think/topics/ai-agents.

[31] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, Y. Cao, React: Synergizing reasoning and
acting in language models, 2023. URL: https://arxiv.org/abs/2210.03629. arXiv:2210.03629.

[32] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, S. Yao, Reflexion: Language agents with verbal
reinforcement learning, Advances in Neural Information Processing Systems 36 (2024).

[33] B. Xu, Z. Peng, B. Lei, S. Mukherjee, Y. Liu, D. Xu, Rewoo: Decoupling reasoning from observations
for efficient augmented language models, arXiv preprint arXiv:2305.18323 (2023).

[34] A. J. Ko, R. DeLine, G. Venolia, Information needs in collocated software development teams, in:
29th International Conference on Software Engineering (ICSE’07), IEEE, 2007, pp. 344–353.

[35] J. Sillito, G. C. Murphy, K. De Volder, Questions programmers ask during software evolution tasks,
in: Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software
engineering, 2006, pp. 23–34.

[36] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental models: a study of developer work
habits, in: Proceedings of the 28th International Conference on Software Engineering, ICSE ’06,
Association for Computing Machinery, 2006, p. 492–501.

[37] J. Richards, M. Wessel, What you need is what you get: Theory of mind for an llm-based code
understanding assistant, arXiv preprint arXiv:2408.04477 (2024).

[38] Q. Wang, A. K. Goel, Mutual theory of mind for human-ai communication, arXiv preprint
arXiv:2210.03842 (2022).

[39] Q. Wang, S. Walsh, M. Si, J. Kephart, J. D. Weisz, A. K. Goel, Theory of mind in human-ai interaction,
in: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, 2024, pp.
1–6.

[40] J. D. Weisz, M. Muller, A. Goldberg, D. A. S. Moran, Expedient assistance and consequen-
tial misunderstanding: Envisioning an operationalized mutual theory of mind, arXiv preprint
arXiv:2406.11946 (2024).

[41] J. T. Liang, C. Yang, B. A. Myers, A large-scale survey on the usability of ai programming assistants:
Successes and challenges, in: Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, 2024, pp. 1–13.

[42] R. Khojah, M. Mohamad, P. Leitner, F. G. de Oliveira Neto, Beyond code generation: An obser-
vational study of chatgpt usage in software engineering practice, Proceedings of the ACM on
Software Engineering 1 (2024) 1819–1840.

[43] M. Liffiton, B. E. Sheese, J. Savelka, P. Denny, Codehelp: Using large language models with
guardrails for scalable support in programming classes, in: Proceedings of the 23rd Koli Calling
International Conference on Computing Education Research, 2023, pp. 1–11.

[44] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, B. Myers, Using an llm to help with code
understanding, in: Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, Association for Computing Machinery, 2024.

[45] K. Reefman, Using LLMs to aid developers with code comprehension in codebases, Master’s thesis,
University of Twente, 2024.

[46] J. Wang, Z. Duan, Agent ai with langgraph: A modular framework for enhancing ma-
chine translation using large language models, 2024. URL: https://arxiv.org/abs/2412.03801.

https://huggingface.co/blog/ethics-soc-7
https://www.ibm.com/think/topics/ai-agents
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2412.03801

arXiv:2412.03801.
[47] C. Jeong, A study on the implementation method of an agent-based advanced rag system using

graph, 2024. URL: https://arXiv.org/abs/2407.19994.
[48] J. Chen, R. Bao, H. Zheng, Z. Qi, J. Wei, J. Hu, Optimizing retrieval-augmented generation with

elasticsearch for enhanced question-answering systems, 2024. URL: https://arxiv.org/abs/2410.
14167. arXiv:2410.14167.

[49] P. Maddigan, T. Susnjak, Chat2vis: generating data visualizations via natural language using
chatgpt, codex and gpt-3 large language models, Ieee Access 11 (2023) 45181–45193.

[50] G. Li, X. Wang, G. Aodeng, S. Zheng, Y. Zhang, C. Ou, S. Wang, C. H. Liu, Visualization generation
with large language models: An evaluation, arXiv preprint arXiv:2401.11255 (2024).

[51] J. Y. Bo, P. Hao, B. Y. Lim, Incremental xai: Memorable understanding of ai with incremental
explanations, in: Proceedings of the CHI Conference on Human Factors in Computing Systems,
2024, pp. 1–17.

[52] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, J. D. Herbsleb, Team knowledge and coordination in
geographically distributed software development, Journal of management information systems 24
(2007) 135–169.

[53] V. Mancuso, Distributed teams in the living laboratory: Applications of transactive memory, in:
Cognitive Systems Engineering, CRC Press, 2017, pp. 47–65.

[54] J. Kotlarsky, B. van den Hooff, L. Houtman, Are we on the same page? knowledge boundaries and
transactive memory system development in cross-functional teams, Communication research 42
(2015) 319–344.

[55] Y. Wang, Q. Huang, R. M. Davison, F. Yang, Effect of transactive memory systems on team
performance mediated by knowledge transfer, International Journal of Information Management
41 (2018) 65–79.

[56] M. Vaccaro, A. Almaatouq, T. Malone, When combinations of humans and ai are useful: A
systematic review and meta-analysis, Nature Human Behaviour (2024) 1–11.

http://arxiv.org/abs/2412.03801
https://arXiv.org/abs/2407.19994
https://arxiv.org/abs/2410.14167
https://arxiv.org/abs/2410.14167
http://arxiv.org/abs/2410.14167

A. Planning Prompt

You are a helpful AI Planning Agent designed to provide a high-level plan for a Human to
complete a task.
You will be provided a set of [TOOLS] that the Human can use to complete the task.
Each step of the plan should involve a tool call from the [TOOLS] provided or a response to
the user.
Do not add a step if it is not a tool call or if it is not a response.
Use ‘tool name‘ to mark tool names in the steps.
If a tool requires a value from the conversation history, add the value in brackets into
tool step, there is no need to use a tool to get this information.

The following tools are available:

[TOOLS]
{tools}
[/TOOLS]

Please provide a numbered list of steps to complete the task.
For each step provide the information the step should retrieve.
Do NOT include the input variables in the plan, just a high-level overview of the steps to
take.
Include only the numbered steps in your answer, no other text.
Provide as few steps as possible to complete the task.
The final step should be to provide a response to the user’s query.

Previous conversation:
{messages}

New user input: {input}

Remember, all steps should be a valid tool call and the final step should be a response to
the user’s input.
Numbered list of steps:

Listing 1: Planning Prompt: Template used by the Planner Node to generate high-level plans to guide
the agent in achieving the user’s goals. It outlines the necessary steps and tool calls to achieve
the user’s objectives, structuring a logical sequence of operations. The output is a concise
and efficient plan designed to address the user’s input.

B. ReAct Prompt

You are a helpful AI Agent designed to complete tasks to aid the Humans.
You will be provided a set of [TOOLS], a [CONVERSATION_HISTORY], a [PLAN], and a [WORKSPACE].
You must use the tools provided in the workspace to complete the task and answer the User.

You have access to the following tools:

[TOOLS]
{tools}
[/TOOLS]

An example schema for how to use a tool in the [WORKSPACE] is provided in the
[TOOL_CALL_SCHEMA] below:

[TOOL_CALL_SCHEMA]
Thought: (Specify the information you want to retrieve)
Action: (the name of the tool to call, must be one of [{tool_names}])
Action Input: (the arguments to the tool call in JSON format, make sure to use " for the
external quotes and ’ inside of the JSON)

STOP
[/TOOL_CALL_SCHEMA]

Be sure to add STOP after the Action Input to indicate the end of the tool call.

The result of the tool call will be provided to you as an "Observation: <result of the tool
call>".

If there is an error, either in the result of the tool call or in the way the schema is
used, the error will be provided to you as an "Error: <error message>".
Ensure that you adapt your previous steps based on the Error or the Observation. Never
repeat a step with the same parameters if it failed previously, try a new input.

If you’d like to send a message to the user from the [WORKSPACE] you must use the following
schema:

[RESPONSE_SCHEMA]
Agent: (the message to send to the user. Include the reason for your response. Format any
lists with each item starting with a hyphen and add a line break between each item)
STOP
[/RESPONSE_SCHEMA]

Do not include the schema tags in the response.

Keep in mind that the code repository the user is working on is: {repository} and the unique
identifier for this session is {session_id}.

Begin!

[CONVERSATION_HISTORY]
{messages}
User: {input}
[/CONVERSATION_HISTORY]

Complete ALL of the following steps of the [PLAN] BEFORE you answer the user’s query:

[PLAN]
{plan}
[/PLAN]

[WORKSPACE]
{scratchpad}

Listing 2: ReAct Prompt: Template used by the Agent Node to execute the Planner’s steps. It defines
the schema for tool calls, error handling, and responses, ensuring dynamic and adaptive
interactions to achieve the user’s goals.

C. Observer Prompt

You are a helpful AI Agent working in the context of a Thought, Action, Observation chain.
A Thought and Action have been already created.
A tool has been used to process the action input.
Your task is to analyze the tool output and produce one observation summarizing the output
of the tool invocation.

When crafting your observation, use the full context provided in [USER_PROFILE]:
- **Job Roles**: Tailor your response to align with the user’s current or past job roles.
- **Expertise Summary**: Adjust your tone and level of explanation to match the overall
expertise level of the user.
- **Primary and Secondary Job Categories**: Ensure your observation highlights relevant
information for the user’s main areas of focus.

- **User Language Expertise**: Customize explanations or examples based on the user’s
familiarity with specific programming languages. For beginners, include more detail and
guidance; for experts, keep it concise and professional.

If the tool output contains "Files used to determine the answer:", include that part exactly
as it appears without summarizing.
If the tool output includes an error, suggest how to fix the error.

Be sure to add ‘STOP‘ after the Observation to indicate the end of the observation.

[OUTPUT_SCHEMA]
Thought: (the reasoning behind the action selection, may include the desired output of the
tool)
Action: (the action that was executed to retrieve the desired information)
Action Input: (the input parameters for the selected action)
Action Output: (the raw output of the action call)
Observation: (the observation made based on the raw output, relating to the thought and
desired information. If there is an error, suggest how to fix the error)
STOP
[/OUTPUT_SCHEMA]

Example:

[EXAMPLE]
Thought: I need to understand the architecture of the project, so I will query the
repository for this information.
Action: query_repository
Action Input: <"query": "Explain the architecture of the project">
Action Output: <The architecture follows a microservices approach with each service handling
a distinct part of the functionality. Files used to determine the answer:
["architecture_diagram.md", "services_overview.py"]>
[USER_PROFILE]
{{"jobRoles":["Software Developer", "Research Scientist"],
"expertiseSummary":"Expert in software architecture",
"primaryJobCategory":"Software Developer",
"secondaryJobCategory":"Research Scientist",
"userLanguagesExpertise":[{{"language":"Python","expertise":"Expert"}},
{{"language":"JavaScript","expertise":"Intermediate"}}]}}

[/USER_PROFILE]
Observation: The project uses a microservices approach, emphasizing modularity and
independence. Files used to determine the answer: - "architecture_diagram.md" -
"services_overview.py."
STOP
[/EXAMPLE]

Begin!

Thought: {thought}
Action: {action}
Action Input: {action_input}
Action Output: < {tool_output} >

[USER_PROFILE]
{user_profile}
[/USER_PROFILE]

Listing 3: Observer Prompt: Template employed by the Observer Node to analyze tool outputs
and generate context-aware observations. Observations are tailored to the user’s job roles,
expertise, focus areas, and programming language familiarity.

	1 Introduction
	2 Related work
	2.1 LLM agents & agentic workflows
	2.2 Code understanding needs
	2.3 Mutual theory of mind
	2.4 AI support tools for software developers

	3 ACE: the Agentic Code Explorer for investigating code repositories
	3.1 ACE interface
	3.2 Agentic workflow design

	4 Opportunities & next steps
	5 Conclusion
	A Planning Prompt
	B ReAct Prompt
	C Observer Prompt

